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Brains are Dynamic

Reaction Time

~ Fast(235-245ms) = Medium (275-285ms)  Slow (315-325ms)
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Brains are dynamic,
state dependent, and
change over time.
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Movie courtesy of Clifford Saron.
Saron C.D. et al. 2003. In: The Asymmetrical Brain. Hugdahl, K and Davidson, R.J., Eds. Pp. 341-408.
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Intracranial ERP Recordings

Intracranial Recordings
Multi-Electrode Array

Span Cortical Layers

In these data:

1. Evoked responses

2. No significant phase resetting |

Shah AS, et al. 2004. In press: Cereb Cortex

3. Trial-to-trial variability
Truccolo WA, et al. 2002. Clin Neurophysiol 113(2)
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Averaging ERPs

Under what conditions is averaging single trial data appropriate?

If we assume that the ERP is identical from trial-to-trial, and the data
recorded from each trial consists of a sum of this ERP and ongoing
background activity and noise, then our signal model for data recorded

during trial r is
(1) = s@)+n,(0) R

Recorded Signal f
during the 7t trial

Unpredictable Signal Component
ERP waveform during the " trial
(Ongoing Activity plus Noise)
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Maximum Likelihood Estimation

By assigning a Gaussian likelihood, we can find the most probable solution by maximizing

e 150.1) = Cro?) 2 Exp|- - s(0))?
r=1 t=1
Looking at the Log Probability
1 R T )
Logp = -—5 ) Y (x,.(t)=s(1))" + const
207 721 =1
We take the derivative with respect to the ERP waveform at a time point ¢
d Log p 28
——— = 0" Y(x(@-s(q)) =0
d S(Q) r=1
1 R
Which setting to zero and solving for the ERP waveform gives  s(q) = — 2 X (q)
R 3

Thus averaging the trials
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Response Variabllity

However, the responses are Channel 14

not identical from trial to trial! ™

There is significant variability: 2
Amplitude variations 3
Latency variations 4

Waveshape variations 5 M
There are also multiple ° "/\\»—/"‘W

contributing components. 7 “‘»/\\,W

These variations are 9 ""/\M»’“’W\" 125 uv
INTERESTING. 10 "\
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Describing Trial-to-Trial Variability

We begin by describing the waveshape of a single
component as a function of time.

Component 1

s,(b)

o 100 200 300
time (ms)
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Describing Amplitude Variability

Amplitude can vary from trial-to-trial

Component 1

a,s (t)

0 100 200 300
time (ms)
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Describing Latency Variability

Onset latency can vary from trial-to-trial

Component 1

1 . .
s (t-7,)
0
-1 . . . . .
0 100 200 300

time (ms)
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Amplitude and Latency Variability

Now we describe amplitude and latency variability

Component 1

oc4sl(t—7:4) |

0 ° 100 200 300
time (ms)
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Multiple Component ERP Model

In this model we assume that each ERP component has its own
stereotypic waveshape that can vary in both amplitude and latency
from trial to trial. In addition, we allow for multiple channel recordings.

N
xmr(t) = Ecmn Ay Sn(t_an) + nmr(t)
i f ? \
Coupling between Latency of the n" component
the n™ source and during the " trial
the m™ channel
(rn> = 0
1
Recorded Signal Amplitude of the »t"
in the m™ channel component during the " trial
during the " trial (@,) = 1

Stereotypic waveform
of the n" component

28 March 2004 EPIC XIV



Learning the Parameters from Data

The goal is to use the recorded data to learn the model parameters.

We do this by designing a machine learning algorithm that uses Bayesian
probability theory to find the most probable values of the model parameters,

such as s(¢), a, and T, given the recorded data.

| have already shown how the most simple model leads to averaging.

A mixing model that does not take into account variability, but assumes an
amplitude density for the components leads to Independent Component
Analysis (ICA). knuth K.H. 1999. ICA99.
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Differentially Variable Component Analysis

This is only one of a number of

possible ways to implement the dVCA

algorithm.

This technique begins with the average

ERP and improves it.

Components are added sequentially.
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END

return
N-1 model
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DEFINE FIRST
COMPONENT

—

WAVESHAPE

as largest AERP from
channel set data

ESTIMATE
WAVESHAPE
equation (13)

INITIALIZE

'

NEW COMPONENT
PARAMETERS

Amplitudes set to 1
Latencies set to 0

COUPLING MATRIX

ESTIMATE

equation (17)

y

DEFINE NEW
COMPONENT
WAVESHAPE

as largest residual

LATENCY SHIFTS

ESTIMATE
SINGLE-TRIAL

equation (20)

waveform

'

AIC
CRITERION

ESTIMATE
SINGLE-TRIAL
AMPLITUDES
equation (14)

SATISFIED?

COMPUTE PON
RESIDUALS REFINEDN\Until refined NEXT

for each channel

ITERATE OVER
COMPONENTS

COMPONENT



Simulations




Synthetic Data

component 2 To characterize dVCA we created a
an [ synthetic dataset designed after the
% 23 [ o MRS sources hypothesized from our

o

amplitude (arb units) >
-

T ?%( b _/\ earlier results in Macaque V1 in
g component b ., ROt | response to a Red Light Flash.

) 100 200 300 input
time (ms)

c1 Initial Layer IV response

93]
@]

component 1 component 2 component 3

— c2 Granular response
—— % c3 Far-field response
c X T 4 s A Anatomical correlates
g ° B Recorded waveshapes

C Current Source Density (CSD)
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Multiple Synthetic Trials

Synthetic Trials Trial 10

In this example the SNR is low.

All other simulations had higher
SNR.

O 0o ~N O g h WN -
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Single-Trial Reconstructions

These are the synthetic trials Trial 10

with their reconstructions.

© O~N O A WN
:
'I
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Robustness to Noise
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Robustness to Noise

cl
c2
c3

SNR, = 7.2 dB

SNR, = -1.8 dB

SNR, = -10.8 dB

[y

o

amplitude (arb units)

'
[y
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o
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time (ms)
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Dependence on Variabllity

Estimation error decreases with increasing variability

;6 : (- ‘ : :
(®)
s 0.2 02T T
o \ ) N
S 0.1 \ So1
N £
E 0 T T < o
0 0.2 0.4 0.6 0.8 1 0 2 4 6 8 10
amplitude variability - ¢_(scale) latency variability - 6_(ms)
O ] O —cl
S g 0.4 — N ce ] Q0 04 o 2
Eevivin ik G S S N N N R SR | O [ 8 iy AU SUURRRR SO DU Y 4
ik L s c3 G O TN =
0w 0.2 \ ----- Qo2 e
0 = oL ey
0 0.2 0.4 0.6 0.8 1 0 2 4 6 8 10
amplitude variability - ¢ (scale) latency variability - ¢_(ms)

28 March 2004 EPIC XIV



Relation to PCA and ICA

No Variability Variability

Amari Error of Separation

: ] 0.5 —
I No Variability (Set 1) - Average Response
[ No Variability (Set 1) - Single-Trial Responses
05 I Variability (Set 2) - Average Response
04 - B Variability (Set 2) - Single-Trial Responses
PCA . ~ . S 03]
sk ] o5 ] T .
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Experimental
Data




Application to Real Data

Subject: Male macaca fascicularis
Task: Intermodal selective attention task

Mehta AD, et al. 2000 Cereb Cortex 10(4)

release lever

“ @U@
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Estimating a Single Component

CSD of the Average ERP CSD of Component 1

2

3 ——

Y —
5 5 o ama Not surprisingly, the
€ 6 single component
g 7 model captures
£ 8 much of the
g 9 — character of the

10— — average.
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time (ms) time (ms)
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How Reasonable is the Model?

CSD of Component 1 Trial 10
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Single-Trial Characteristics
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Splitting the Dataset

Splitting the dataset reveals the way in which the two
response states differ

A B C
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Three Components from the Late Subset
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Studying Single-Trial Oscillations

We have developed some new techniques to study oscillatory bursts, which
we have found are present over a wide range of frequencies.

For example, the early and late subsets show a difference in the presence
of 160-220 Hz bursts between 42-57 ms.

Early Subset Late Subset
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9 9
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Y 100 S 100
o
3 o
= u=
50 50
0 100 200 0 100 200
time (ms) time (ms)
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Characterizing Oscillatory Bursts

Using dVCA to identify components in the single trial allows us to remove
them from the data, leaving unmodeled ongoing activity.

We can then identify oscillatory bursts and characterize them.

Time-Frequency plot of Early Subset Modeled Bursts in the same trial
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Ongoing Challenges

dVCA is not fast. There is a lot of computation that goes on. The
more data and channels, the slower the analysis gets. High
dimensional spaces are notoriously difficult to search. Advances in
optimization are extremely relevant to this work.

Difficulties with large numbers of components.
The danger of getting trapped in local solutions of the model space
becomes greater with increasing numbers of components. We have
found that it is best to use dVCA little by little to learn about the signals.

Waveshape changes.
We do not accommodate waveshape changes. Although we have
some ideas that we are currently working on to solve this.
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Obtaining the Marginal Posterior

Marginalizing over the variance we get the marginal posterior

-MRT

p(C,s(0),4,6|x(0),1) « O ~ p(C|I)p(s|I)

Like before we look at the Log probability

RT
logP = M logQ + const

2

From here we look at the derivative of the Log probability wrt each of our model
parameters. Setting the derivative equal to zero gives us the most probable solution.



Estimating the Waveshapes

For the /" component at time g, we have

dlogP MRT 0! J Q _
Jds; (9) 2 J Sj(Q)
with
' [ yer, - |
=-2 WC,a, -\Cya;,)s(q)
95,(9) mEl; y Sr 21D
where

N
W=xmr(q+rjr)_zlcmn nr n(q T, +T]r)
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Estimating the Amplitudes

For the jt" component during the pt trial

where

N
U = |x,,(#) - ElCmnanpsn(l‘—rnp)

n#j

V =0C, .s

mj j(t_T'

JP



Estimating the Source-Channel Couplings

For the coupling between the jt component and the it channel

where /
N
X = xir(t) - E Cin Ayr Sy (t _Tnl”)
n=1
\ I’l;éj




Estimating the Latency

For the latency of the j® component during the pth trial we maximize

M T N
Z = 2 2 ijajp Sj(f—ij) me(t)— Ecmnanpsn(t_rnp)
m=1t=1 n=1
n#j
T, = argmax/Z




The Iterative Algorithm 0. Begin with initial guesses for
the waveshapes s(q)
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